![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§2.1 消元法原理
导学提纲
1.线性方程组的一般形式是什么?
2.何谓线性方程组的一个解?解方程组的目的是什么?
3.何谓两个线性方程组同解?
4.对线性方程组可以施行哪些同解变换?
5.观察例题、动手做习题,体会消元法步骤;怎么判定线性方程组有唯一解、无解以及有无穷多解?
本章讨论一般线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0068_0001.jpg?sign=1738824981-BWXOMNB7fIySCgWKpCFpCm4ZS1bJWYpM-0-512e98e57a5e3562861783292192a62f)
其中x1, x2, …, xn是未知量;aij(i=1,2, …, s; j=1,2, …, n)表示第i个方程xj的系数;bi(i=1,2, …, s)表示第i个方程的常数项.
定义2.1.1 分别用数c1, c2, …, cn代替x1, x2, …, xn,如果使方程组(1)中每一个方程都变成恒等式,则称n元有序数组(c1, c2,…, cn)是方程组(1)的一个解.解方程组就是判断(1)是否有解?若有解,求出全部解.
定义2.1.2 设线性方程组解,则称这两个方程组同解或等价.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0068_0002.jpg?sign=1738824981-TDgb7LUWbNcEvG38mAWSlQ5dKVjKLKnL-0-d092c7b4c688494d43a670a151babeaa)
如果线性方程组(1)的解都是(2)的解;并且(2)的解也都是(1)的
定理2.1.1 对线性方程组(1)施行以下三种变换,所得方程组与(1)同解.
(1)对换两个方程(换法变换);
(2)用非零数c乘以某一个方程(倍法变换);
(3)将某一个方程的k倍加到另一个方程上去(消法变换).
证 不失一般性,设方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0001.jpg?sign=1738824981-KBMoFoVUi6hNoMEYrFhQAPD5ggnrYKVy-0-965cbcc66d9031fc452830d2b68a82b4)
对换(3)中两个方程,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0002.jpg?sign=1738824981-F2dZg9gkhfexOopnSS8UhxMHUo5vtrWx-0-8fdf695800f62e0ba212a8c6f7135c15)
设(c1, c2, c3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0003.jpg?sign=1738824981-MU5OX4FumELYMzCn9d1lzqpQgpZHihYt-0-8cef2021a1d3be94efa85e0fbe7b44ef)
成立.即有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0004.jpg?sign=1738824981-Sz3Zbcrv5wUZZOgrmNGPJoqnJOvWHOZK-0-7841b0e5cce638c13173adb42ae54696)
成立.所以(c1, c2, c3)是方程组(4)的解,同理可证,如果(d1, d2, d3)是(4)的解,那么也是(3)的解,这就证明了(3)与(4)同解.
用非零数c乘以(3)中第1个方程,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0005.jpg?sign=1738824981-KbJ3rEKgRbUufkToxD5d2eBUnZCyNKTd-0-c8b0693ce1b0ba32207125bb8119951f)
设(e1, e2, e3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0006.jpg?sign=1738824981-OGsJB1Vpfl97t6SYKT9zcyHvev1Kt5V6-0-64ccd29ca4ce6e1da2a9eba2019e03cf)
成立.当c≠0时,也有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0001.jpg?sign=1738824981-8lOP9EjZpk0RvRXoTstJSc8x7OL9QSh2-0-1209a8ab94c172bc061a4b4c59982667)
成立,这表明(3)的解(e1, e2, e3)也是(5)的解.反之,设(d1, d2, d3)是(5)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0002.jpg?sign=1738824981-QGWy8J3DIqSEUFHafewtUbs27JiNIIsA-0-40a421a4715ea9cdd1febb19cc45be98)
成立,因为c≠0,用乘以第1个恒等式,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0004.jpg?sign=1738824981-1oCzek0OffG1O9VAGEsqObguL6jYocs3-0-8788dc5b2081b7f14595c95c21e7eda3)
这表明(d1, d2, d3)也是(3)的解,因此(3)与(5)同解.
将(3)中第1个方程的k倍加到第2个方程上去,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0005.jpg?sign=1738824981-tVpxLLwFpQmCn27NqTMC0nJ9mgZrn0qu-0-75259acf03256f19a5812f7b42d6908c)
设(c1, c2, c3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0006.jpg?sign=1738824981-kBIsm6qSvcpJIlrcf8MP21gS6JUBIQZw-0-bede4f61703b3c4a8c634a40cf97a543)
成立.将第1个恒等式两边乘以k加到第2个恒等式两边,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0007.jpg?sign=1738824981-UysTW9oayYhUsLTeivkiwigpV5VKOnSm-0-3451dc0348cfcb09ddc6243d9d106f5e)
这表明(3)的解(c1, c2, c3)是(6)的解.反之,设(d1, d2, d3)是(6)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0001.jpg?sign=1738824981-YOwHciMPGPudjx7oTNiN9EfW3VDCgoCK-0-ba804f34ef108a64b26beb5039400123)
成立.将第1个恒等式两边乘以(-k),加到第2个恒等式两边,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0002.jpg?sign=1738824981-DSYAYUG7GQn1qOcKZ8beixsccKvLZ7t4-0-ad0d1227fdf88d56ece53afef1fc00c4)
这表明(6)的解(d1, d2, d3)也是(3)的解,所以(3)与(6)同解.
今后称定理2.1.1中的三种变换为线性方程组的同解变换.
用消元法解线性方程组,就是对方程组施行一系列同解变换,使每一个方程保留一个未知量,消去其余方程中这个未知量,直到能判断出解的情况为止.
例2.1.1 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0003.jpg?sign=1738824981-60wzl8cqYpQ3buKcxJh4NmTEvkQA05oL-0-70d8eb4d457f17a7d268955f1642b5e1)
解 对换 ①②,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0004.jpg?sign=1738824981-pbfk2A507krBnLTWxjV2JBpb9s6B7W6U-0-7502f9572d074c14f528aceeed137eaa)
②′-4①′, ③′-3①′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0005.jpg?sign=1738824981-w7EIEj140LQnPaFHzyH7ATLnT3mUn2Gy-0-3ca4238bb794ac955c4a46f4f8c80908)
③″-2②″,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0006.jpg?sign=1738824981-jM81gCXFn15kuiD5WmxG9jeOu7KLN1uT-0-c70f59223af36b32ca46eee410060ab7)
由此可知方程组有唯一解,由③‴得x3=3;将x3=3代入②‴,得x2=-1;将x2=-1, x3=3代入①‴,得x1=2,唯一解是(2, -1,3).
例2.1.2 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0001.jpg?sign=1738824981-W4rDCMR4WZ2qsVhpowpkFFpck9z9blvK-0-ba51d7b7f78fa192b50395ce70c21098)
解 ②-4①, ③-3①,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0002.jpg?sign=1738824981-CRK4hiMfFj9CSCREpJJoDhbOkAl7tPSA-0-0f21cc563ae6e814f6e4c1fcdc2b56c6)
③′-②′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0003.jpg?sign=1738824981-gBGpH8MHQfTuFMtxIRbbAAzhImAlX2AS-0-a3999603df3173b6dbb0e3595043d2a4)
③″是矛盾方程,无解.因而方程组无解.
例2.1.3 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0004.jpg?sign=1738824981-lpq0vh3xwcCtRXp3h0EnCMsT91nNrnqq-0-0bce1676642d8b086429bb34c6149e34)
解 ②-3①, ③-4①,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0005.jpg?sign=1738824981-7o8BoAbSFoTdW8OOPUl9dcndsVRtlHCq-0-20a089949120f074c158e28f36e1b9e3)
③′-②′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0001.jpg?sign=1738824981-yNRJVuVzEGvsyhDIeG5VRKVgeKeuegaP-0-44347014f37c5e3919fd58d5445fb12c)
③″是多余方程,只需解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0002.jpg?sign=1738824981-M0PWWPBESdiaKb1E4aDJDjVvBbqyUA3P-0-6bf8e388c9b39ef52642a339ad3def87)
易见方程组有无穷多解,①″-2②″,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0003.jpg?sign=1738824981-pC2tsBDQF5I61Ywryi0KGa07QLrxztzX-0-929ccbd65ed3d523105084f86779ed38)
移项
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0004.jpg?sign=1738824981-goW56PA4HrZMBXjsZZnR4eNBVEFLqnnM-0-d008eb5745aeb3e4e0e43c1a07b87b97)
x3是自由未知量,全部解为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0005.jpg?sign=1738824981-VpOJcbPbgKIy44a6ctBDzZyBDSfjsZAu-0-357ef4bedcd86265216dc84994e2189f)
其中c为任意数.
习题2.1
用消元法解下列线性方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0006.jpg?sign=1738824981-N67sSSEvqxhENAOPeHgHUQE4PJAB760n-0-e852be214f96b63f891b086f7a1bb794)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0074_0001.jpg?sign=1738824981-4OCLl4HIhxhY4ckss3u3hvH0VdnCoerM-0-b777f21ddd5a91dcac72ded240b5b7f6)