![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
上QQ阅读APP看书,第一时间看更新
1.3 极限的运算
1.3.1 极限的运算法则
定理 设函数f(x)和g(x)在自变量x的同一变化过程中(x→x0或x→∞)的极限分别为A和B,简记为limf(x)=A,lim g(x)=B.则
(1)lim[f(x)±g(x)]=limf(x)±lim g(x)=A±B;
(2)lim[f(x)·g(x)]=limf(x)·lim g(x)=A·B;
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022001.jpg?sign=1739267207-LEewQefDzXvJpVLWu3Si1tjBmup3R7bV-0-94c1ab7852e5e4a83f37200b09df9f2f)
其中(1)和(2)可推广到有限个函数的情形.而且(2)还有如下两个推论:
推论1 lim[C·f(x)]=C·limf(x)=C·A,其中C为常数.
推论2 lim[f(x)]n=[limf(x)]n=An,其中n为正整数.
例1 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022003.jpg?sign=1739267207-VNBFrEYloWtKZAwvMNDQRDUJNVVd1zJV-0-4d13af43f029519c680b3f8e45667719)
例2 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022013.jpg?sign=1739267207-6Hvgo5pLQnrhOVeVisPjucCU9dChrga4-0-35d7134b681f99145e15575fe3e6891b)
例3 求 .
解 当x→∞时分子和分母都趋向于无穷大,不能直接用法则(3).我们可先将分子和分母同除以它们的最高次方幂x3后,再求极限.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022004.jpg?sign=1739267207-gBZSMFPCGjahDFsiiCDh81LsyBbcc3Nk-0-486a5b9bc96ea08bd60bcbdccca6aa50)
由此不难证明:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022005.jpg?sign=1739267207-3viC1rriIJfsJsPYOmHiNCaRG9jYVD30-0-7daca2e8b3a4bfde603b1cd00c6834c0)
其中a0,b0均不为零.式(1.9)可作为公式使用.
1.3.2 两个重要极限
在函数极限的计算中,下面两个极限起着重要的作用(证明从略):
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022006.jpg?sign=1739267207-gsBbSCEHXFufgMMX3IIaUfz7TjidzWbz-0-6ec118b5d58f0b92999c44fa4c3fdb36)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022007.jpg?sign=1739267207-Kw8rR47sWbOejzo5jg08jpUKiC4ZGcM8-0-bbe25837c5c0498dde93a125e93a7354)
其中e≈2.71828,是一个无理数.以e为底的对数记为ln x,称为自然对数.
例4 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022009.jpg?sign=1739267207-ygQQVgpSU48uuPW74H2c1RtvHhXdfMD2-0-76c03fe159c6fc9a747a7ffdfa4e90f0)
例5 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022011.jpg?sign=1739267207-6FPjYIeXNoLMkEQQGNtPZtnwIDS9jrIH-0-6dadcb71925d72ed70b524c30570a021)
例6 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023002.jpg?sign=1739267207-pbBpfQA0EGR6i4QNufjxQ7GNrjn5t8p3-0-391e0fb8b436e7de981f2216df4fa2a7)
例7 求
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023004.jpg?sign=1739267207-s8rvbkJmdKNUjBt7HxAIuittGuDRll6r-0-c23bb7a1ff431dd9ab1addd5b6e949c9)
例8 求
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023006.jpg?sign=1739267207-GnMGPbPozdwbHlw73MytzCEy4vQIpDup-0-71aba6c8e424b030cc5aefddc2a3b3a1)