![预处理共轭梯度法识别桥梁动荷载分析与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/618/37204618/b_37204618.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.2 第二识别法(IMII)
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_10.jpg?sign=1739296105-EhfNmTzfLAUJlMMCPB4vJQG2dFsA8Z0W-0-653b8a3f20b97f8aa40c490f49c40298)
图2.2.1 移动荷载识别简支梁模型
如图2.2.1所示,将桥梁考虑为一简支梁,其跨长为L,抗弯刚度为EI,单位长度质量为ρ,黏性比例阻尼为C,忽略剪切变形和转动惯量(即伯努利-欧拉梁)。假设一动荷载f(t)以速度c自梁左端支承处向右移动,则其振动微分方程:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_11.jpg?sign=1739296105-MpOFhYv1gXrRTYz1lQeb0x9Qpgvw7krM-0-d2c32f9ae0fddfbf51fbea4e62ce2ef8)
这里v(x,t)是梁在时刻t、位置x处的变形,δ(x-ct)是狄拉克函数。
式(2.2.1)的边界条件为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_12.jpg?sign=1739296105-2MzfVt4w3CtYznKvCho6QW8IixG9PyDc-0-74479b079f2f4510972439c48c9e3860)
和
基于模态叠加原理,假设梁的第n阶模态振型函数为则式(2.2.1)的解可表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_15.jpg?sign=1739296105-uko5onU2zOSD6oODj1OxlhOb9miCx3Uk-0-201d20f0b1acc12e556a8a3594503c19)
矩阵形式为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_16.jpg?sign=1739296105-s7HYUc01S3a5yD8uzuBjMuxHGDbZrFtA-0-8faa6fe67afd4aea55bd731744f0f2a1)
这里n为模态数,qn(t)(n=1,2,…,∞)是第n阶模态位移。将式(2.2.2)代入式(2.2.1),并在[0,L]内对x进行积分,利用边界条件和狄拉克函数特性,系统振动微分方程可用模态位移qn(t)表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_17.jpg?sign=1739296105-wTJ6zoJSyccnKNf64rL5CvLmnisTz7sd-0-2edaf49f4076a4e7e7c2c04549d86a9c)
这里分别为桥梁第n阶模态频率、阻尼比和模态力。
如有k个荷载,且第k个荷载到第一个荷载的距离为则式(2.2.4)可写为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_20.jpg?sign=1739296105-4TqVhtPtMInz0fQl8aAPFlpPjQNtgBgB-0-3dba3454d736122e11e7aebdd9d5232f)
x1,x2,…,xl处的模态位移可通过式(2.2.1)求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_21.jpg?sign=1739296105-lgXn9IQNsDaUrfpjy7Gv7fLeRxR9L7x8-0-f1fa3e5c8646fffd2a0a91a7bafc5012)
梁上x1,x2,…,xl处的速度可通过位移的一次微分求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_22.jpg?sign=1739296105-WS2gUWX3kENJBkRZKXfh158xq3r6y7r5-0-0bf591dfd4f602d2ea6647a1b3df121d)
进一步,梁上x1,x2,…,xl处的加速度可通过位移的二次微分求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_23.jpg?sign=1739296105-SePFApmRhflQTVcC0eB7lr68ZbggipVq-0-d4153991fe87515f77d21e8262edf7a7)
类似地,相应位置的弯矩可利用关系式M=-EI(∂2v/∂x2)求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_24.jpg?sign=1739296105-4VI4hMhJNGaiXCZEY5p5hAvULzw25bee-0-4a2379eb90cf80fe2fdc5d8e4192adca)
若f1,f2,…,fk为已知常量移动荷载,忽略阻尼的影响,则式(2.2.1)的解为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_25.jpg?sign=1739296105-h47kK3gDk2PJhJFYxOhB68rmiPjnyrZL-0-55c951cdccdcea5585b706d0138761bf)
这里若在一组常量移动荷载作用下,x1,x2,…,xl处的位移已知,则每个常量移动荷载可通过解下式方程求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_27.jpg?sign=1739296105-4fECxkzOnUF0tnwuu3cFfAWoeTEZZPsn-0-4d388c5513c91dcc9b26dd3082aef8c5)
其矩阵形式可表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_28.jpg?sign=1739296105-iP2S2hCcOrUBd3cgSNA1F5ZWQauoLbkS-0-1123b8d7cb64db6034fcce5704fe6693)
这里
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_29.jpg?sign=1739296105-iZGSPj0lq2g0bomL5ZbhNzlmbaLGCHtx-0-4c12ca6bac1c22d81608e758c00717e4)
若l≥k,即位移的测量点数大于或等于车轴轴数,f可用最小二乘法求解:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_30.jpg?sign=1739296105-was637t917bKxiSvQpNaxOxe8xtwgMXn-0-eb3d8ea1fb59b22a293b8de0aaf668ec)
若已知的不是桥梁位移响应,而是弯矩响应,则同样可以从弯矩响应求得式(2.2.1)的解:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_31.jpg?sign=1739296105-lLK2WoUrS0qJWzK40zDeDcpa7xD97rYP-0-cd1b201c4f6e08b78fb1c9d6c9cb24df)