![多传感器数据智能融合理论与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/842/41309842/b_41309842.jpg)
2.3 多传感器数据融合中的卡尔曼滤波理论
2.3.1 卡尔曼滤波简介
针对传感器信息的跟踪滤波算法,大多数工程技术人员会选用卡尔曼滤波算法。卡尔曼滤波算法是R.E.Kalman在1960年发表的一篇著名论文中所阐述的一种递归解算法。该算法在解决离散数据的线性滤波问题方面有着广泛的应用,特别是随着计算机技术的发展,给卡尔曼滤波提供了广泛的研究空间。卡尔曼滤波器是由一组数学方程所构成,它以最小化均方根的方式,来获得系统的状态估计值。滤波器可以依据过去状态变量的数值,对当前的状态值进行滤波估计,对未来值进行预测估计。
一个离散的线性状态方程和观测方程如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_01.jpg?sign=1739532231-vGO7CfweXdK8JDYAFBioKeieq1B7r2oM-0-a7f0399b282ef165d6607cf9323a3271)
其中,X(k)为状态向量,Y(k)为观测向量;W(k)为状态噪声,或称为系统噪声;V(k)为观测噪声。假定W(k)和V(k)为互不相关的白噪声序列,分别符合N(0,Q)和N(0,R)的正态分布。
系统噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_02.jpg?sign=1739532231-PBROGStRAtfNaWCZ8x2PBGz3buqPow4R-0-4395ab1bf072a2e57aa5e05196225dff)
观测噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_03.jpg?sign=1739532231-tiwtzTtFqrxoOYikCOxU39ktnKYFJWFd-0-e340565eeea1ac4dd35ab10cbdea94d4)
卡尔曼滤波器就是在已知观测序列{Y(0),Y(1),…,Y(k)}的前提条件下,要求解X(k)的估计值,使得后验误差估计的协方差矩阵P(k/k)最小。其中
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_04.jpg?sign=1739532231-2RK2S6pR16KF5Q8DO0cXUyuDlLXEAXhT-0-52ca415788bb97b2b35d9c728d608b5a)
在式(2.5)中,e(k/k)为后验误差估计,它可以由下式求得:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_05.jpg?sign=1739532231-OIAnSoIN2KhreWzqBlflMT6gfKvBzFIW-0-3805c92bb79ddf6c08bccedb19996ca6)
定义先验误差估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_06.jpg?sign=1739532231-C6iWemzbJqfLKlXvfvYDp2uWK0piXwJO-0-41465ffec0ef95e0441d4e260d97f625)
可以得到先验误差估计的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_07.jpg?sign=1739532231-LilVaUQyBoI1yAETj8m9HxP6JPXk07gi-0-92d6ef7f4f4573a5e1318d120180ea35)
假定卡尔曼滤波的后验估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_08.jpg?sign=1739532231-mkCP1axFnwsAFLm4hNPTRQFBNipnn9qD-0-b16944964d0485c82fc5c21a45acb41e)
将式(2.9)代入到式(2.6)中,得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_09.jpg?sign=1739532231-MJFaHGtpFqMd0ZYbiILuVGACgTVffFPL-0-f04e131d11afc047a9f226fde1916161)
将式(2.10)代入到式(2.5),可得
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_10.jpg?sign=1739532231-sx0NusnHF3tffAFKnjgGMuxDmYgy8UYp-0-e4d880dfe496e241bf235f2a27a46a18)
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_01.jpg?sign=1739532231-AuAkKk5em06CzX2qo83w5IjjJcLVfaD7-0-bc43d7f7d5fed2355f77140ee9308c93)
假设:随机信号W(k)与V(k)与已知的观测序列{Y(0),Y(1),…,Y(k)}是正交的,则有E[W(k-1)Y(k-1)]=0,E[V(k-1)Y(k-1)]=0。
式(2.11)可以化简为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_02.jpg?sign=1739532231-xMAKn35Xzc7oke8HbyIu3z57qh2Y0Sb1-0-b0168705c4e54e00c1f504b96f00b0b6)
对式(2.12)求导,并令其为零,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_03.jpg?sign=1739532231-DbSsCxLBimILYnvXCT9ntiHorcIy7zMS-0-443ad7e72f6c6165fa27574e7293b8a9)
同理,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_04.jpg?sign=1739532231-oxbtTKUoQCPUPSLH0mn3IEsRI4Aop638-0-d0a99eb225e6d73b35a8af22f891fa52)
因此,可以得到状态估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_05.jpg?sign=1739532231-ZRQZQ0H2Gv9p2bz4bXwhldQcSsQYfw4i-0-ad0ec5380bc4b904e1b3dbcc1b84475b)
状态预测估计为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_06.jpg?sign=1739532231-EaTJ3BUOENxq8Hghxp9SDQic37JVvH36-0-9b97676610c5422ea3ee1698e9b5a7ce)
进一步计算得出误差的协方差矩阵如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_07.jpg?sign=1739532231-pjD9D8VZUBcuHjyByRB0bcE5Wt20nkuS-0-b41e597ade322d32eed2ccc78eeb6edb)
由此可以获得卡尔曼滤波的递推公式如图2.7所示。
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_08.jpg?sign=1739532231-jHSPBW9Ny7IISnXoRHoWiitfMaNDzF1t-0-854321b6d8d6566c29bc649a6656679e)
图2.7 卡尔曼滤波的递推公式