光信息的可逆存储及其在量子信息中的应用
上QQ阅读APP看书,第一时间看更新

参考文献

[1] NIELSEN M A, CHUANG I L.Quantum computation and quantum information[M].Cambridge:Cambridge University Press, 2010.

[2] DEBNATH S, LINKE N M, FIGGATT C, et al.Demonstration of a small programmable quantum computer with atomic qubits[J].Nature, 2016, 536: 63-66.

[3] LADD T D, JELEZKO F, LAFLAMME R, et al.Quantum computers[J].Nature, 2010, 464(7285): 45-53.

[4] KIMBLE H J.The quantum Internet[J].Nature, 2008, 453(7198): 1023-1030.

[5] DUAN L M, LUKIN M D, CIRAC J I, et al.Long-distance quantum communication with atomic ensembles and linear optics[J].Nature, 2001, 414(6862): 413-418.

[6] HESHAMI K, ENGLAND D G, HUMPHREYS P C, et al.Quantum memories: emerging applications and recent advances[J].Journal of Modern Optics, 2016, 63(20): 2005-2028.

[7] SANGOUARD N, SIMON C, DE-RIEDMATTEN H, et al.Quantum repeaters based on atomic ensembles and linear optics[J].Reviews of Modern Physics, 2011, 83(1): 33-80.

[8] BRIEGEL H J, DÜR W, CIRAC J I, et al.Quantum repeaters: the role of imperfect local operations in quantum communication[J].Physical Review Letters, 1998, 81(26): 5932-5935.

[9] KNILL E, LAFLAMME R, MILBURN G J.A scheme for efficient quantum computation with linear optics[J].Nature, 2001, 409(6816): 46-52.

[10] KOK P, MUNRO W J, NEMOTO K, et al.Linear optical quantum computing with photonic qubits[J].Reviews of Modern Physics, 2007, 79(1): 135-174.

[11] ZHOU Z Q, HUELGA S F, LI C F, et al.Experimental detection of quantum coherent evolution through the violation of Leggett-Garg-type inequalities[J].Physical Review Letters, 2015:doi.org/10.1103/PhysRevLett.115.113002.

[12] LVOVSKY A I, SANDERS B C, TITTEL W.Optical quantum memory[J].Nature Photonics, 2009, 3(12): 706-714.

[13] GIOVANNETTI V, LLOYD S, MACCONE L.Advances in quantum metrology[J].Nature Photonics, 2011, 5(4): 222-229.

[14] KANEDA F, XU F H, CHAPMAN J, et al.Quantum-memory-assisted multi-photon generation for efficient quantum information processing[J].Optica, 2017, 4(9): 1034-1037.

[15] CHANELIÈRE T, MATSUKEVICH D N, JENKINS S D, et al.Storage and retrieval of single photons transmitted between remote quantum memories[J].Nature, 2005, 438(7069): 833-836.

[16] EISAMAN M D, ANDRÉ A, MASSOU F, et al.Electromagnetically induced transparency with tunable single-photon pulses[J].Nature, 2005, 438(7069): 837-841.

[17] ZHANG H, JIN X M, YANG J, et al.Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric down conversion[J].Nature Photonics, 2011, 5(10): 628-632.

[18] LAURAT J, CHOI K S, DENG H, et al.Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling[J].Physical Review Letters, 2007: doi.org/10.1103/PhysRevLett.99.180504.

[19] KUZMICH A, BOWEN W P, BOOZER A D, et al.Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles[J].Nature, 2003, 423(6941): 731-734.

[20] YANG S J, WANG X J, BAO X H, et al.An efficient quantum light–matter interface with sub-second lifetime[J].Nature Photonics, 2016, 10(6): 381-384.

[21] CHRAPKIEWICZ R, DĄBROWSKI M, WASILEWSKI W.High-capacity angularly multiplexed holographic memory operating at the single-photon level[J].Physical Review Letters, 2017:doi.org/10.1103/PhysRevLett.118.063603.

[22] JULSGAARD B, KOZHEKIN A, POLZIK E S.Experimental long-lived entanglement of two macroscopic objects[J].Nature, 2001, 413(6854): 400-403.

[23] JULSGAARD B, SHERSON J, CIRAC J I, et al.Experimental demonstration of quantum memory for light[J].Nature, 2004, 432(7016): 482-486.

[24] MOISEEV S A, KRÖLL S.Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition[J].Physical Review Letters, 2001: doi.org/10.1103/PhysRevLett.87.173601.

[25] ALEXANDER A L, LONGDELL J J, SELLARS M J, et al.Photon echoes produced by switching electric fields[J].Physical Review Letters, 2006: doi.org/10.1103/PhysRevLett.96.043602.

[26] AFZELIUS M, SIMON C, DE RIEDMATTEN H, et al.Multimode quantum memory based on atomic frequency combs[J].Physical Review A, 2009: doi.org/10.1103/PhysRevA.79.052329.

[27] REIM K F, NUNN J, JIN X M, et al.Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout[J].Physical Review Letters, 2012:doi.org/10.1103/PhysRevLett.108.263602.

[28] DING D S, ZHANG W, ZHOU Z Y, et al.Raman quantum memory of photonic polarized entanglement[J].Nature Photonics, 2015, 9(5): 332-338.

[29] KACZMAREK K T, LEDINGHAM P M, BRECHT B, et al.High-speed noise-free optical quantum memory[J].Physical Review A, 2018: doi.org/10.1103/PhysRevA.97.042316.

[30] POEM E, FINKELSTEIN R, MICHEL O, et al.Fast, noise-free memory for photon synchronization at room temperature[C]//Proceedings of 2018 Asia Communications and Photonics Conference (ACP).Piscataway: IEEE Press, 2018: 1-7.

[31] LI J F, WANG Y F, ZHANG S C, et al.High efficiency photonic storage of single photons in cold atoms[J].arXiv Preprint, arXiv: 1706.01404, 2017.

[32] GUO J, FENG X, YANG P.et al.High-performance Raman quantum memory with optimal control in room temperature atoms[J].Nature Communication, 2019: doi.org/10.1038/s41467018-08118-5.

[33] MA Y, MA Y Z, ZHOU Z Q, et al.One-hour coherent optical storage in an atomic frequency comb memory[J].Nature Communications, 2021: doi.org/10.1038/s41467-021-22706-y.

[34] ANDRÉ A, LUKIN M D.Manipulating light pulses via dynamically controlled photonic band gap[J].Physical Review Letters, 2002: doi.org/10.1103/PhysRevLett.89.

[35] BAJCSY M, ZIBROV A S, LUKIN M D.Stationary pulses of light in an atomic medium[J].Nature, 2003, 426(6967): 638-641.

[36] LIN Y W, LIAO W T, PETERS T, et al.Stationary light pulses in cold atomic media and without Bragg gratings[J].Physical Review Letters, 2009: doi.org/10.1103/PhysRevLett.102.213601.

[37] WU J H, ARTONI M, LA R G C.Decay of stationary light pulses in ultracold atoms[J].Physical Review A, 2010: doi.org/10.1103/PhysRevA.81.033822.

[38] BAO Q Q, ZHANG X H, GAO J Y, et al.Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms[J].Physical Review A, 2011: doi.org/10.1103/PhysRevA.84.063812.

[39] ZHANG X J, WANG H H, WANG L, et al.Stationary light pulse in solids with long-lived spin coherence[J].Physical Review A, 2011: doi.org/10.1103/PhysRevA.83.063804.

[40] ZHANG X J, WANG H H, LIU C Z, et al.Direct conversion of slow light into a stationary light pulse[J].Physical Review A, 2012: doi.org/10.1103/PhysRevA.86.023821.